

CCC Annual Report UIUC, August 19, 2015

Thermo mechanical Analysis of Solidifying Shell Including Bending and Unbending

Nathan Seymour

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

htinuous

Casting

Pnsortium

Executive Summary

 This work investigates the effects of bending, unbending, and spray cooling on the mechanical behavior of a solidifying steel shell.

The new model quantifies:

- Cyclic stress-strain behavior in the steel shell during spray cooling.
- Transverse crack susceptibility at the inner radius surface during unbending via fatigue.

Introduction

- During continuous casting the steel shell is subjected to thermal cycling in the spray cooling zone and bending/unbending stresses.
- Thermal cycling, bending and unbending contribute to the formation of transverse cracks.
- The thermo mechanical behavior of the solidifying steel strand in spray cooling should be investigated.

University of Illinois at Urbana-Champaign

Modeling Objective

Metals Processing Simulation Lab

3

4

- The objective of this model was to determine the mechanical behavior through the solidifying steel strand with a narrow slice due to mold, spray cooling, bending and unbending.
- The mechanical behavior of the shell from meniscus to caster exit can then be used to understand formation of transverse cracks.
- This model will later be modified to include microstructural features of columnar austenite grains with grain-boundary ferrite and/or precipitates.
- All experiments were run on ABAQUS/Standard 6.13.2 on Windows 7.

6

30 mm	200 mm	Fine Mesn $30 mm$
Duter Radius		Inner Radii
Mesh Dimensions: – Total Domain Size: 260 – Fine Element Size: 0.5 – Coarse Element Size: – Total of 960 elements – Total of 3,534 nodes – Fine elements extend f	0 mm x 1.5 mm 6 mm x 0.5 mm 1.0 mm x 0.5 mm from shell surface to 30 mm below sh	ell surface
iversity of Illinois at Urbana-Champaign	Metals Processing Simulation Lab	• Nathan Seymour •
Therm	nal Boundarv	Conditions

• Convective film boundary conditions are imposed on shell surface according to calculations from CON1D to simulate heat transfer in the spray cooling zone.

tinuous Casting Consortium

Thermal Simulation Conditions

Model Parameter	Value					
Initial Temperature [°C]	1550	_		М		
Superheat [°C]	22	Λ		u S		
T _{liquidus} [°C]	1528	Heat Flux	Solidifying	n y Z	Liquid Ste	eel
T _{solidus} [°C]	1508	$\backslash \square$	Snell	o n		
T _{sink} for Spray Water [°C]	25	N		e		
Mold Length [m]	0.690		/	r	Ň	
SSC Zone Length [m]	30.291		_ /		\mathbf{N}	
Slab Thickness [m]	0.260		T _{solidus}		T _{liquidus}	
University of Illinois at Urbana-Champaign	• Metals	Processing Simulation Lab	•	N	lathan Seymour	•

Mechanical Simulation Conditions

Transition lengths of 0.61 m	Modeling Parameter	Value
bending/unbending strains	Distance to Bender [m]	2.83
are applied to model domain.	Bending Transition Length [m]	0.61
Distance	Bending Arc Length [m]	23.56
to Bender Casting Bending Transition Length	Unbending Transition Length [m]	0.61
	Caster Length [m]	31.0
	Casting Radius [m]	15.0
	Dwell Time [min]	28.2
Unbending Transition	Casting Speed [m/min]	1.10
Length	Slab Thickness [mm]	260.0
	↓ Slab Thickness	
ending Arc Length $=\frac{\pi}{2}R$		

.

•

• Note the oscillation of the shell surface temperature above and below the $\gamma \rightarrow \gamma + \alpha$ transition temperature.

nuous

Shell Thickness Profile

Total Strain in Bending

- The total strain in the casting direction (Y) is linear through the thickness, being compressed at the inner radius and stretched at the outer radius.
- The total strain in the width direction (Z) is linear, expanding at the inner radius and contracting at the outer radius when bending occurs.

Total Strain in Unbending

- Total strain in Z-direction does not return to a constant value after unbending. OR maintains larger total strain than IR after unbending.
- For a 1.5m wide casting, this Z-direction strain difference corresponds to a difference of 1.5mm in width at the inner radius and outer radius.

Metals Processing Simulation Lab

• After bending is applied to the model domain, the σ_{yy} stress profile returns to its original shape in approximately 25 seconds.

University of Illinois at Urbana-Champaign

22

21

- 1300 1200 Bending Bendina In Spray Zone Time: 159.86 s Dist Below Meniscus: 2.931 m In Spray Zone Time: 159.86 s Dist Below Meniscus: 2.931 m 1100 -100 -50 50 100 -100 -50 Distance From Strand Centerline [mm] Distance From Strand Centerline [mm]
- During bending the solidifying shell reaches peak stresses of 5 MPa and -7 MPa at the outer and inner radii, respectively.
- The shell is 27 mm thick during bending start at 2.83 ٠ m below the meniscus.

50

100

Thermal Results

- The Abaqus model surface temperatures agree very well with the CON1D surface temperatures.
- The fluctuation of shell surface temperature is approximately 100°C for each spray nozzle.
- Near the end of the of the caster, the surface temperatures fluctuate about the $\gamma \rightarrow \gamma + \alpha$ transition temperature.

Metals Processing Simulation Lab

The thermal model ran in 23.0 minutes.

University of Illinois at Urbana-Champaign

Mechanical Results

- The shell surface experiences a total of 88 stress reversals due to thermal cycling in the spray cooling zone.
- Unbending creates 3x larger stresses for 5x longer times than bending.
- Bending and unbending creates final (residual) width differences of 0.1% (1-2mm) between the inside and outside radii.
- The average magnitude of stress cycles decreases rapidly with distance below shell surface.
- The mechanical model ran in 1.12 hours.

Nathan Seymour

31

Conclusions

- The effects of thermal cycling in the spray cooling zone on shell stresses decrease rapidly with distance below shell surface.
- The inner radius surface during unbending is most susceptible to crack formation; it experiences mean tensile stress while inelastic strain increases in tension.
- The mechanical effects of thermal cycling from the spray zone start to crack formation must be accounted for when modeling the formation of transverse cracks.
- A new computational model to predict thermo mechanical behavior of a solidifying steel shell from the meniscus through spray cooling has been developed.

University of Illinois at Urbana-Champaign

Future Work

Metals Processing Simulation Lab

33

- Parametric studies with this fast 1-D modeling tool to investigate effects of casting conditions, bulging, etc.
- Use as a framework for 3-D thermo mechanical modeling including microstructural features to predict ductility:
 - Modify this modeling tool into a micro model that includes microstructural features such as columnar austenite grains with grain boundary ferrite and/or precipitates.
 - Use a macro scale model to determine the bending and bulging conditions experienced by the shell.
 - Link the macromodel bending and bulging results to the micromodel via boundary conditions.

Acknowledgments

- Continuous Casting Consortium Members (ABB, AK Steel, ArcelorMittal, Baosteel, JFE Steel Corp., Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, SSAB, ANSYS/ Fluent)
- Professor Brian Thomas, Dr. Lance C. Hibbeler

University of Illinois at Urbana-Champaign

inuous Casting

References

Metals Processing Simulation Lab

- 1. ABAQUS 6.13 User's Manual. (2013). SIMULIA.
- 2. Amzallag, C., et al. "Standardization of the rainflow counting method for fatigue analysis." *International journal of fatigue* 16.4 (1994): 287-293.
- 3. CON1D 10.10.01 Users Manual, (2010).

36

35